BEGINNING APPROXIMATELY FOUR DECADES AGO, A SERIES OF RANDOMIZED TRIALS SUGGESTED THAT, IN SERIOUSLY ILL HOSPITALIZED PATIENTS, PRIMARY PREVENTION OF CLINICALLY IMPORTANT UPPER GASTROINTESTINAL BLEEDING — STRESS-ULCER PROPHYLAXIS — SIGNIFICANTLY REDUCES THE RISK OF BLEEDING. In response, practice guidelines have consistently supported prophylaxis for patients in the intensive care unit (ICU) who have risk factors for bleeding. Clinicians worldwide administer prophylaxis in the form of acid suppression for 80 to 90% of critically ill and injured patients, and prescriptions for acid suppressants in less severely ill patients are prevalent. Recently, however, the net benefit of acid suppression has been questioned. In this review, we define upper gastrointestinal bleeding in hospitalized patients and discuss the pathophysiological features, incidence, risk factors, prognosis, and consequences of prophylaxis, as well as our perspectives on current and future practice.

DEFINITIONS

Hemorrhage from the upper gastrointestinal tract (esophagus, stomach, or duodenum) is defined as primary when it is the cause of hospital admission and is defined as secondary when it complicates the hospital course for patients who have been admitted for other reasons. Patients with secondary upper gastrointestinal bleeding are generally older, more seriously ill, and more likely to have coexisting conditions such as cardiopulmonary disease or chronic renal failure, as compared with patients who have primary bleeding.

Hospitalized patients with a history of gastrointestinal bleeding who are considered to be at sufficient risk for rebleeding commonly receive, or continue to receive, medication for prevention of secondary bleeding. In most cases, however, prophylaxis is prescribed for hospitalized patients who are at risk for bleeding from new gastroduodenal lesions or from previously asymptomatic disease that has been unmasked by the illness that prompted hospitalization. Primary prevention of secondary bleeding is the focus of this article.

PATHOPHYSIOLOGICAL FEATURES

The human stomach produces a unique acidic milieu in the foregut that is essential for digestion of food and elimination of ingested pathogens. In the healthy state, neurohormonal influences on parietal cells stimulate hydrochloric acid secretion, resulting in a pH of approximately 2. Although this pH level would rapidly disintegrate most tissues, prostaglandins and nitric oxide help to sustain a protective mucous layer that protects the gastric epithelium. Normal blood flow supplies oxygen and bicarbonate and removes hydrogen ions diffusing from the...
lumen into the gastric mucosa. Multiple acid sensors monitor extracellular pH, potentially triggering diminished gastrin production and reduced acid output. Coordinated lower esophageal and pyloric sphincter function can further balance pH in the esophagus and duodenum relative to the more acid-resistant stomach.

This network of defenses is crucial for protecting the gastric epithelium. In seriously ill patients, proinflammatory states, splanchnic hypoperfusion, and impaired microcirculation due to conditions such as hypovolemia, low cardiac output, or shock can induce ischemia, reperfusion injury, and low gastric intramucosal pH. These factors can converge to impair the integrity of the mucosal lining, causing unchecked gastric acidity (Fig. 1). Gastroduodenal erosions and ulceration may ensue, exacerbated by stress-triggered vagal stimulation. Although gastric acid is thought to predispose hospitalized patients to gastrointestinal bleeding or to precipitate or perpetuate bleeding, disruption of the mucosal barrier is probably more salient in the genesis of gastrointestinal bleeding.

Incidence and Risk Factors

Critically Ill Patients

The incidence of secondary upper gastrointestinal bleeding varies with the diagnostic definition, the prophylaxis prescribed, and the publication era (Table 1). Approximately 50 years ago, endoscopies showed stress-related gastric mucosal ulceration in 75 to 100% of critically ill, injured, or burned patients. Current data from surveillance studies are unavailable, but asymptomatic endoscopic ulceration during critical illness may be inconsequential. Historically, occult bleeding occurred in 15 to 50% of critically ill patients, and overt bleeding occurred in 5 to 25% of critically ill patients not receiving prophylaxis. In an international period-prevalence study reported in 2015, Krag and colleagues documented overt bleeding in 49 of 1034 heterogeneous patients who had been admitted to the ICU (4.7%). Patients with a bleeding diathesis, including those receiving extracorporeal life support, may have higher rates of overt bleeding, as reported in a study involving 132 such patients, 18 of whom had overt bleeding (13.6%).

By contrast, clinically important bleeding has hemodynamic consequences that may warrant red-cell transfusions or invasive interventions. The pervasive impression is that clinically important upper gastrointestinal bleeding has declined over time because of advances in critical care practice; however, this postulate is not concordant with all the evidence. In two large studies from the 1990s, the incidence of clinically important bleeding was 1.5% and 3.5%. Recently, in two small feasibility trials involving heterogeneous patients, the rates were 0% and 5.5%; these estimates are outside the confidence limits for the rate of clinically important bleeding in the large 2015 study by Krag et al.

Many investigations have examined predictors of clinically important upper gastrointestinal bleeding in patients in the ICU. One large, multicenter study showed two independent risk factors: invasive mechanical ventilation for 48 hours or longer (odds ratio for bleeding, 15.6; 95% CI, 3.0 to 80.1) and coagulopathy (odds ratio, 4.5; 95% CI, 1.8 to 10.3). In another large, multicenter study, additional factors independently associated with clinically important bleeding were three or more coexisting diseases (odds ratio, 8.9; 95% CI, 2.7 to 28.8), liver disease (odds ratio, 7.6; 95% CI, 3.3 to 17.6), renal-replacement therapy (odds ratio, 6.9; 95% CI, 2.7 to 17.5), acute coagulopathy (odds ratio, 4.2; 95% CI, 1.7 to 10.2), and a high organ-failure score (odds ratio, 1.4; 95% CI, 1.2 to 1.5), as well as use of acid suppressants (odds ratio, 3.6; 95% CI, 1.3 to 10.2), which may reflect confounding by indication.

Neurologic injury combined with severe physiological stress (e.g., traumatic brain injury) that prompts ICU admission may amplify the probability of stress-related bleeding. Population-specific risk profiles are based on the severity of acute and chronic illnesses and on certain drugs and interventions (e.g., mechanical ventilation, renal-replacement therapy, and extracorporeal life support) used in the hospital. In view of differences in candidate predictors and analytic approaches across studies over time, interpretation of data on risk factors for bleeding must take into account the competing risks of bleeding-prevention strategies themselves.

The chief nonpharmacologic approach to decreasing the risk of bleeding is enteral administration of nutrients that buffer gastric acid, in-
Figure 1. Pathophysiological Features of the Gastroduodenal Mucosa.

A layer of alkaline mucus gel is a key feature of gastroduodenal mucosal defense. Beneath this lining are surface epithelial cells that secrete mucus, bicarbonate, prostaglandins, and other protective factors. These surface epithelial cells are regenerated by mucosal progenitor cells. The underlying capillary microcirculation provides oxygen and produces prostaglandins and nitric oxide. Multiple acid sensors monitor extracellular pH, potentially triggering diminished gastrin production and reduced acid output. In seriously ill patients, pro-inflammatory states, splanchnic hypoperfusion, and impaired microcirculation due to conditions such as hypovolemia, low cardiac output, or shock can induce ischemia, reperfusion injury, and low gastric intramucosal pH. These factors can converge to impair the integrity of the mucosal lining, causing unchecked gastric acidity. Gastric acid is often considered to precipitate, perpetuate, or be a predisposing factor in gastrointestinal bleeding in hospitalized patients; however, disruption of the mucosal barrier may be the most salient factor in the genesis of such bleeding.
<table>
<thead>
<tr>
<th>Category</th>
<th>Definition</th>
<th>Incidence</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucosal or submucosal ulceration</td>
<td>Endoscopically documented gastroduodenal mucosal or submucosal erosions or ulcerations</td>
<td>Historically, approximately 75–100% among selected critically ill patients; no current estimates for bleeding risk</td>
<td>No available contemporary endoscopic surveillance studies; no estimates for patients in medical and surgical units; low clinical relevance</td>
</tr>
<tr>
<td>Occult bleeding</td>
<td>Gastric or fecal samples with guaiac-positive testing for blood</td>
<td>Historically, approximately 15–50% among heterogeneous critically ill patients; no current estimates for bleeding risk</td>
<td>No available contemporary surveillance studies of occult bleeding, but most patients receive prophylaxis; no estimates for patients in medical and surgical units; low clinical relevance</td>
</tr>
<tr>
<td>Overt bleeding</td>
<td>Hematemesis, frank blood or coffee-grounds findings in nasogastric aspirate, or melena</td>
<td>Approximately 5% among heterogeneous critically ill patients; approximately 0.3% among heterogeneous patients in medical and surgical units</td>
<td>Critically ill patients: data from contemporary, international period-prevalence study in which 70% of patients received prophylaxis; patients in medical and surgical units: data from contemporary, 4-yr hospital database in which 60% of patients received prophylaxis</td>
</tr>
<tr>
<td>Clinically important bleeding</td>
<td>Overt bleeding in addition to one or more of the following findings: a spontaneous drop in systolic or diastolic BP of ≥20 mm Hg within 24 hr before or after bleeding; an orthostatic increase in pulse of ≥20 beats/min and decrease in systolic BP of 10 mm Hg; a decrease in hemoglobin of ≥2 g/dl over a 24-hr period or transfusion of ≥2 units of PRBCs within 24 hr after the start of bleeding; or invasive interventions (e.g., therapeutic endoscopy or vasopressor initiation or increase)</td>
<td>Approximately 3% among heterogeneous critically ill patients; approximately 0.2% among heterogeneous patients in medical and surgical units</td>
<td>Critically ill patients: data from contemporary, international period-prevalence study in which 70% of patients received prophylaxis; patients in medical and surgical units: data from contemporary, 4-yr hospital database in which 60% of patients received prophylaxis</td>
</tr>
</tbody>
</table>

* Shown are categories of upper gastrointestinal bleeding in heterogeneous hospitalized patients according to various definitions, presented in order of increasing clinical importance. Mucosal ulceration and occult bleeding rates are from studies published before 2000. With respect to research performed in the past decade, rates of overt and clinically important bleeding are from a study involving critically ill patients that was published in 2015 and a study involving non–critically ill patients in medical and surgical units that was published in 2011. Most recent investigations that have provided the data for current bleeding rates enrolled patients who were already receiving prophylaxis against stress ulcer. Bleeding rates in specific subgroups of patients (e.g., those with thermal injury) are not shown. BP denotes blood pressure, and PRBCs packed red cells.
duce prostaglandin production, and enhance regional mucosal perfusion,26-29 optimizing mucosal energy and intramucosal pH.30 Enteral nutrition may provide protection against ischemic bleeding28,31 and increase gastric pH to a greater extent than acid suppression does,32 as well as theoretically reduce the risk of stress-related bleeding during critical illness.33 A meta-analysis of trials that explicitly reported standard early enteral feeding showed that acid suppression does not decrease the risk of bleeding and may increase the risk of pneumonia.34 However, trials have not directly compared bleeding rates for patients receiving enteral nutrition with the rates for those not receiving enteral nutrition. Recommendations for early enteral nutrition during critical illness35 and timely feeding to ameliorate hospital-acquired malnutrition36 signal the need for more careful attention to enteral alimentation practices in future trials evaluating acid suppression.

HOSPITALIZED PATIENTS WHO ARE NOT CRITICALLY ILL

Definitions of bleeding vary more among studies of patients admitted to medical and surgical units than among studies of patients in the ICU, generating a wide range in the incidence of bleeding, although it is generally much lower than the incidence among patients in the ICU. A 4-year audit of 17,707 medical patients documented a 0.4% bleeding rate, with bleeding defined by the use of esophagogastroduodenoscopy.37 Among 13,330 diverse patients, excluding obstetrical and psychiatric patients, the rate of clinically important bleeding was 0.005%; bleeding episodes, primarily due to duodenal ulcer disease, occurred after a mean period of 14 days in the hospital.38 The incidence of bleeding may differ among subgroups of patients. For example, a study involving 514 patients admitted with acute kidney injury showed that 40 of the patients (7.8%) had clinically important bleeding.39 In a 4-year analysis of 75,723 hospital admissions, overt gastrointestinal bleeding occurred in 224 patients (0.29%) and clinically important bleeding occurred in 176 patients (0.23%).11

In the limited number of studies involving patients admitted to medical and surgical units, predictors of risk vary. A study focused on patients with acute kidney injury showed that bleeding was associated with severe overall illness, severe renal failure, severe thrombocytopenia, and cirrhosis.39 In another study, involving 13,330 critically ill and non–critically ill patients, only ICU admission during the index hospitalization and mechanical ventilation were risk factors for bleeding.38 Among 17,707 patients admitted to a general medicine service, the main risk factors for bleeding were anticoagulant therapy and treatment with clopidogrel.37 Independent risk factors for overt bleeding in a study involving 75,723 inpatients included an age of more than 60 years, male sex, liver disease, acute renal failure, sepsis, care by a medical service, prophylactic anticoagulation, and coagulopathy with or without the administration of antiplatelet agents.40 This study profiled a high-risk group of patients (13% of the cohort) in whom the number needed to treat with acid suppression to avert one episode of bleeding would be less than 100.

PROGNOSIS

CRITICALLY ILL PATIENTS

In earlier epochs, stress-related gastrointestinal bleeding portended a poor prognosis, including perforation, hemorrhagic shock, and death.27,28 More recently, in an analysis of data from 1666
Heterogeneous patients enrolled in two studies, clinically important bleeding was associated with an additional ICU stay of 4 to 8 days and an increased risk of death, which was significant with the use of two of three adjustment methods. Some populations may be at particular risk for adverse outcomes, such as patients receiving extracorporeal life support, for whom the risk of gastrointestinal bleeding may be independently associated with in-hospital mortality (odds ratio, 5.9; 95% CI, 1.4 to 24.3). Patients who are not critically ill For patients admitted to medical or surgical units, the prognosis after an episode of bleeding may depend as much on the acute and chronic illnesses and the amount of blood loss as on the endoscopically identified cause of the bleeding. In one large cohort, shock, sepsis, renal failure, and cirrhosis were associated with an increased risk of death among patients who had an episode of bleeding. Data from rigorous analyses of the consequences of hospital-acquired bleeding are lacking; prediction models for patients admitted to medical and surgical units need to be replicated before bedside application is feasible.

Prophylaxis with Acid Suppression for Critically Ill Patients

Possible Benefits

In keeping with global practice, we center our discussion of prophylaxis against stress ulcer on proton-pump inhibitors and histamine H₂-receptor antagonists. Although the latter were the most commonly used drugs years ago, proton-pump inhibitors now predominate. Recently, systematic reviews have outnumbered new randomized trials addressing the possible benefits of acid suppression during critical illness. Table 2 summarizes the results of the most recent network meta-analysis, involving 57 trials. Network meta-analyses combine direct evidence (findings from trials that conduct head-to-head comparisons of agent A with agent B) with indirect evidence (inferences about A vs. B that are based on their effects relative to a third agent, C), yielding what are called network estimates, the most credible estimates of effect. Clinically important gastrointestinal bleeding was reported in 31 trials enrolling a total of 5283 patients. Network estimates provide moderate-quality evidence for three comparisons showing a significant reduction in the risk of bleeding: proton-pump inhibitors versus histamine H₂-receptor antagonists (odds ratio for bleeding, 0.4; 95% CI, 0.2 to 0.7), proton-pump inhibitors versus no prophylaxis or placebo (odds ratio, 0.2; 95% CI, 0.1 to 0.6), and proton-pump inhibitors versus sucralfate (odds ratio, 0.3; 95% CI, 0.1 to 0.7). Moderate-quality evidence from 36 trials enrolling a total of 5498 patients suggests that none of the management options differ significantly with respect to the risk of death from all causes.

Possible Harms

There is growing concern that the adverse effects of acid suppression may predispose patients to nosocomial infections, which are more common and are associated with higher morbidity, mortality, and costs than the bleeding that acid suppression is prescribed to prevent. Evidence linking infections and acid suppression is mounting, with the association potentially mediated through modification of the gastrointestinal microbiome, exacerbating the dysbiosis that characterizes critical illness.

Network estimates provide moderate-quality evidence of an increase in pneumonia with proton-pump inhibitors or histamine H₂-receptor antagonists, but confidence intervals for the comparisons with placebo or no treatment are wide. Pharmacoepidemiologic studies provide further support for an increased risk of pneumonia with acid suppression. In a cohort of 35,312 mechanically ventilated patients, those receiving proton-pump inhibitors had an increased propensity-adjusted odds of ventilator-associated pneumonia (odds ratio, 1.2; 95% CI, 1.03 to 1.41). Among 21,214 patients admitted for cardiac surgery, the risk of nosocomial pneumonia associated with proton-pump inhibitors versus histamine H₂-receptor antagonists was increased after propensity matching (risk ratio, 1.19; 95% CI, 1.03 to 1.38).
Table 2. Direct, Indirect, and Network Meta-Analysis (NMA) Estimates of the Risks of Clinically Important Bleeding and Pneumonia among Critically Ill Patients Receiving Prophylaxis against Stress Ulcer.*

<table>
<thead>
<tr>
<th>Comparison</th>
<th>No. of RCTs</th>
<th>Direct Estimate (95% CI)</th>
<th>Quality of the Evidence</th>
<th>Indirect Estimate (95% CI)</th>
<th>Quality of the Evidence†</th>
<th>NMA Estimate (95% CI)</th>
<th>Quality of the Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinically important bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2RA vs. placebo</td>
<td>7</td>
<td>0.53 (0.23–1.19)</td>
<td>Moderate‡</td>
<td>1.36 (0.29–6.51)</td>
<td>Low§</td>
<td>0.64 (0.32–1.30)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>PPI vs. H2RA</td>
<td>14</td>
<td>0.35 (0.18–0.69)</td>
<td>Moderate¶</td>
<td>0.86 (0.11–7.02)</td>
<td>Low§</td>
<td>0.38 (0.20–0.73)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>H2RA vs. sucralfate</td>
<td>12</td>
<td>0.86 (0.48–1.55)</td>
<td>Moderate§</td>
<td>0.32 (0.04–2.67)</td>
<td>Low§</td>
<td>0.80 (0.46–1.40)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>PPI vs. placebo</td>
<td>4</td>
<td>0.66 (0.12–3.74)</td>
<td>Low§</td>
<td>0.17 (0.06–0.49)</td>
<td>Moderate§</td>
<td>0.24 (0.10–0.60)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>Sucralfate vs. placebo</td>
<td>4</td>
<td>1.15 (0.41–3.23)</td>
<td>Low§</td>
<td>0.48 (0.14–1.64)</td>
<td>Moderate§</td>
<td>0.80 (0.37–1.73)</td>
<td>Low§‖</td>
</tr>
<tr>
<td>PPI vs. sucralfate</td>
<td>1</td>
<td>0.23 (0.02–2.30)</td>
<td>Low§</td>
<td>0.32 (0.13–0.76)</td>
<td>Moderate**</td>
<td>0.30 (0.13–0.69)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>Pneumonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2RA vs. placebo</td>
<td>8</td>
<td>1.09 (0.70–1.71)</td>
<td>Moderate§</td>
<td>1.94 (0.73–5.20)</td>
<td>Low§**</td>
<td>1.19 (0.80–1.78)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>PPI vs. H2RA</td>
<td>13</td>
<td>1.15 (0.85–1.57)</td>
<td>Moderate§</td>
<td>2.10 (1.04–4.21)</td>
<td>Moderate**</td>
<td>1.27 (0.96–1.68)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>H2RA vs. sucralfate</td>
<td>16</td>
<td>1.32 (0.98–1.77)</td>
<td>Moderate§</td>
<td>1.35 (0.64–2.86)</td>
<td>Low§**</td>
<td>1.30 (1.08–1.58)</td>
<td>Moderate‡</td>
</tr>
<tr>
<td>PPI vs. placebo</td>
<td>3</td>
<td>1.48 (0.55–3.99)</td>
<td>Low§</td>
<td>1.53 (0.90–2.59)</td>
<td>Moderate**</td>
<td>1.52 (0.95–2.42)</td>
<td>Moderate¶</td>
</tr>
<tr>
<td>Placebo vs. sucralfate</td>
<td>4</td>
<td>0.67 (0.34–1.32)</td>
<td>Low§</td>
<td>1.54 (0.84–2.80)</td>
<td>Moderate**</td>
<td>1.09 (0.72–1.66)</td>
<td>Low§‖</td>
</tr>
<tr>
<td>PPI vs. sucralfate</td>
<td>4</td>
<td>2.16 (1.24–3.77)</td>
<td>Moderate§</td>
<td>1.44 (0.97–2.14)</td>
<td>Moderate§</td>
<td>1.65 (1.20–2.27)</td>
<td>Moderate¶</td>
</tr>
</tbody>
</table>

* Odds ratios from the direct, indirect, and NMA results are shown for four preventive strategies: a histamine H₂-receptor antagonist (H2RA), a proton-pump inhibitor (PPI), sucralfate, or placebo. Data are from Alhazzani et al.1 RCT denotes randomized clinical trial.

† None of the indirect estimates were downgraded for intransitivity (defined as differences in direct comparisons of treatment effect, such as comparisons between A and C and between B and C, from which one infers differences in the indirect comparison [i.e., the comparison between A and B]).

‡ The quality of the evidence was downgraded by one level for serious imprecision.

§ The quality of the evidence was downgraded by two levels for very serious imprecision.

¶ The quality of the evidence was downgraded by one level for serious risk of bias.

‖ The quality of the evidence was downgraded by one level for serious incoherence (defined as differences between direct and indirect estimates of effect).

** The quality of the evidence was downgraded by one level for risk of bias.
Two small, randomized trials, both focused on proton-pump inhibitors, have addressed the effect of acid suppression on *Clostridium difficile* infection during critical illness. The small samples and small numbers of events made the results uninformative (relative risk of infection, 2.2; 95% CI, 0.3 to 15.0). In a case–control study involving 408 patients in the ICU, investigators identified two independent predictors of *C. difficile* infection: a long duration of exposure to proton-pump inhibitors (odds ratio, 2.0; 95% CI, 1.2 to 3.4) and use of antimicrobial agents (odds ratio, 2.5; 95% CI, 1.2 to 5.2). Another study, involving 3286 critically ill patients, showed an adjusted risk of *C. difficile* infection that was increased by a factor of 3 among patients receiving proton-pump inhibitors (odds ratio, 3.1; 95% CI, 1.1 to 8.7).

Possible Benefits

Acid suppression may be reasonable for hospitalized patients in whom new indications for prophylaxis against bleeding develop, such as use of dual antiplatelet therapy. Proton-pump inhibitors decreased the risk of gastrointestinal bleeding in a trial involving 3761 outpatients receiving dual antiplatelet therapy and are recommended in patients requiring antiplatelet therapy who have additional risk factors for bleeding.

Few randomized trials evaluating prophylaxis against stress ulcer in patients admitted to medical and surgical units have been performed. One trial randomly assigned 100 medical patients with risk factors for bleeding to receive magaldrate (an antacid containing aluminum and magnesium) or placebo. Clinically important bleeding developed in 6% of the patients in the placebo group but in none of the patients in the antacid group. In a trial involving 139 medical patients randomly assigned to treatment with cimetidine or sucralfate, clinically important bleeding developed in 3% of the patients in the sucralfate group but in none of those in the cimetidine group. More recently, a propensity-matched study involving 37,960 hospitalized patients showed that after adjustment for confounders, proton-pump inhibitors were associated with a reduced risk of clinically important bleeding (odds ratio, 0.58; 95% CI, 0.37 to 0.91).

Possible Harms

An observational study involving 63,878 inpatients who were not critically ill showed that acid suppression was associated with hospital-acquired pneumonia; in adjusted analyses, the increase in risk reached conventional levels of significance for proton-pump inhibitors (odds ratio, 1.3; 95% CI, 1.1 to 1.4) but not for histamine H₂-receptor antagonists (odds ratio, 1.2; 95% CI, 0.98 to 1.4). A recent systematic review of 10,307 cases of hospital-acquired *C. difficile* infection showed an association with proton-pump inhibitors among patients in medical and surgical units (odds ratio, 1.8; 95% CI, 1.5 to 2.1). In a multicenter study involving 4143 such patients, proton-pump inhibitors significantly increased the risk of health care–associated *C. difficile* infection (odds ratio, 2.6; 95% CI, 1.7 to 4.0). Recurrent infection — not just the index infection with *C. difficile* — was also associated with acid suppression in a systematic review involving 7703 patients (adjusted odds ratio, 1.5; 95% CI, 1.2 to 1.9).

Given the very low risk of bleeding, the dearth of direct evidence that acid suppression is beneficial, and the possibility of appreciable harm, guidelines published in 1999 recommended that acid suppression not be used for routine primary prevention of gastrointestinal bleeding in patients in medical and surgical units. More recent practice guidelines are lacking.

Overprescription of Acid Suppression Across the Continuum of Care

Primary prophylaxis against bleeding for critically ill patients is often encoded by electronic or preprinted admission order sets, irrespective of risk — so-called indication creep — such as for ICU patients even if they are breathing without assistance or are mechanically ventilated only overnight. Prescription may target presumed risk factors for bleeding; the established risk for patients needing invasive ventilation provides indirect evidence of risk in patients receiving non-invasive ventilation.

Unnecessary acid suppression in the ICU and continued acid suppression after discharge from the ICU may also drive unnecessary prescription. A survey of 119 trauma centers showed that 40% of respondents continued acid suppression for more than 50% of patients transferred out of the ICU. Two studies showed continued prophylaxis without indication for approximately 60%
of patients transferred from the ICU to a medical unit and for approximately 35% of patients discharged home.\(^{60,61}\)

Despite an often tenuous rationale, initiation of prophylactic acid suppression in patients admitted to medical and surgical units is also common, with studies showing up to 60% of such patients receiving primary prophylaxis against bleeding.\(^{6,7}\) which is often continued after discharge. For instance, among 255 surgical inpatients, 138 (54%) received prophylaxis with a proton-pump inhibitor and 33% had new prescriptions for continued acid suppression at home.\(^{62}\) A study of stress-ulcer prophylaxis in patients admitted to a general surgery unit showed that, after the exclusion of patients receiving concurrent nonsteroidal antiinflammatory agents or antiplatelet therapy, 53 of 67 patients (79%) had no risk factors for bleeding that warranted the prophylaxis.\(^{63}\) In a study involving 1769 patients in six medical units for whom clinicians prescribed acid suppression, prescriptions were continued after discharge in 54% of the patients, none of whom met appropriateness criteria.\(^{64}\) Fear of rebound hypersecretion after cessation of acid suppression may drive continued use. However, a systematic review showed that although discontinuation of proton-pump inhibitors induced refluxlike symptoms in asymptomatic volunteers, it did not increase symptoms in patients with reflux disease.\(^{65}\) These findings in outpatient series that focused on reflux symptoms may not be relevant to efforts aimed at preventing hospital-acquired bleeding.

Further fuelling concerns about indiscriminate acid suppression are complications such as chronic kidney disease\(^{66}\) and osteoporosis,\(^{67}\) as well as Food and Drug Administration warnings about infection.\(^{68}\) Medication reconciliation after sentinelevents such as C. difficile infection\(^{57}\) and during transitions in care may result in timely cessation of acid suppression and mitigate overuse. The promising prescriptive authority of a focused, pharmacist-led management program for prophylaxis against stress ulcer safely reduced inappropriate acid suppression in ICU and non-ICU populations by 58% and 84%, respectively.\(^{58}\)

SUMMARY

Prophylactic acid suppression is routinely used for critically ill patients with risk factors for bleeding, but it is also used for critically ill patients at low risk and for many hospitalized patients who are not critically ill and have a very low risk of bleeding. Even for patients at high risk, the number needed to treat in order to prevent one episode of bleeding may now be larger than previously estimated. Given the possible adverse effects of acid suppression, widespread use — even in high-risk patients — may not achieve a net benefit. For low-risk patients in the ICU, in medical and surgical units, or in the community, use of acid suppression in the absence of a clear indication for it may confer a net harm.\(^{12}\)

In alignment with the Choosing Wisely campaign,\(^{69}\) established practices may sometimes be abandoned not because a better replacement is identified but because a previously useful intervention proves to be unhelpful or actually results in worse outcomes.\(^{70,71}\) As the Declaration of Helsinki reminds us, “Even the best proven interventions must be evaluated continually through research for their safety, effectiveness, efficiency, accessibility and quality.”\(^{72}\) Responding to the challenge by increasing the number of patients enrolled in randomized trials,\(^{73}\) ICU research consortia are now helping to answer the question of which patients, if any, should receive prophylaxis against stress ulceration. In accordance with the Institute for Healthcare Improvement’s spotlight on the costs of unnecessary medical care, determining which non-ICU inpatient populations are best served by prophylactic acid suppression, as well as which patients need not receive acid suppression, is a pressing health care priority.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

REFERENCES

5. Rhodes A, Evans LE, Alhazzani W,
The New England Journal of Medicine

The journal welcomes consideration of new submissions for Images in Clinical Medicine. Instructions for authors and procedures for submissions can be found on the Journal’s website at NEJM.org. At the discretion of the editor, images that are accepted for publication may appear in the print version of the Journal, the electronic version, or both.

Copyright © 2018 Massachusetts Medical Society.

2516